(Streuungsparameter, Variabilitätsmass, Variationsmass) gehört zu den statistischen Masszahlen, deren Aufgabe es ist, Gesamtheiten in knapper Form zu charakterisieren. Streuungsmasse dienen speziell dazu, die Streuung (Variabilität, Variation) der Einzelwerte um das Zentrum der Gesamtheit bzw. ihrer Häufigkeitsverteilung zu beschreiben. Die Tabelle zeigt, welches Skalenniveau. (Skala) erreicht sein muss, damit ein bestimmtes Streuungsmass sinnvoll berechnet werden kann. Streuungsmasse Literatur: Bleymüller, J./Gehlert, G./Gülicher, H., Statistik für Wirtschaftswissenschaftler, 8. Aufl., München 1992.
Meßzahl der methodischen Statistik. Das Streuungsmaß gibt Auskunft über die Streuung der einzelnen Elemente einer statistischen Reihe um ihren Mittelwert. Je inhomogener die statistischen Werte sind, desto größer ist ihre Streuung um den Mittelwert. Arten von Streuungsmaßnahmen:
1. Spannweite, als die Differenz zwischen dem größten und dem kleinsten Merkmalswert, z.B. 2, 3, 4, 6, 7, 9 = 9 2 = 7
2. Mittlerer Quartilsabstand, geht von der auch beim Median (vgl. Mittelwert) angestellten Überlegung aus, die Merkmalswerte in Quartile einzuteilen. Ein Beispiel: 8, 9, 11, 12, 13, 14, 15, 17, 18,
1. Quartil (Q1): nach oben begrenzt durch: 11
2. Quartil (Me): Median von 12, 13, 14: 13
3. Quartil (Q3): nach oben begrenzt:
Formel: (Me Q1) + (QM1 Me) Q3 Q1 2 2 =2
3. Varianz, die alle Daten mit einbezieht. Im Falle der Häufigkeitsverteilung wird jeweils die Differenz zwischen der Klassenmitte und dein arithmetischen Mittel quadriert, um das Vorzeichen auszuschalten, und anschließend jeweils mit der Besetzungszahl der zugehörigen Klasse multipliziert.
4. Weniger bedeutende Streuungsmaße: Variations- und Schwankungsbreite, durchschnittliche einfache Abweichung, Standardabweichung (beim arithmetischen Mittel), Wahrscheinlicher Fehler, Lexis’scherDisperisons-Koeffizient und Gini’sche mittlere Differenz.
Streuungsmaße geben an, wie stark oder schwach die einzelnen Werte einer Häufigkeitsverteilung entweder voneinander oder von einem - Mittelwert abweichen. Es handelt sich also in der Regel um “Mittelwerte von Abweichungen von Mittelwerten”. “Die Streuung ist stets auch ein Mass des Risikos. Je größer die Streuung, desto gefährdeter ist die Rolle des korrespondierenden Mittelwertes als Typus” (Günter Menges).
Vorhergehender Fachbegriff: Streuungsmaße | Nächster Fachbegriff: Streuungsparameter
Diesen Artikel der Redaktion als fehlerhaft melden & zur Bearbeitung vormerken
|
|